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Preface

This second edition of Digital Communications: Fundamentals and Applications 
represents an update of the original publication. The key features that have been 
updated are:

•  The error-correction coding chapters have been expanded, particularly in 
the areas of Reed–Solomon codes, turbo codes, and trellis-coded modula-
tion.

•  A new chapter on fading channels and how to mitigate the degrading  effects 
of fading has been introduced.

•  Explanations and descriptions of essential digital communication concepts 
have been amplified.

•  End-of-chapter problem sets have been expanded. Also, end-of-chapter 
question sets (and where to find the answers), as well as end-of-chapter 
CD exercises have been added.

•  A compact disc (CD) containing an educational version of the design soft-
ware SystemView by ELANIX® accompanies the textbook. The CD con-
tains a workbook with over 200 exercises, as well as a concise tutorial on 
digital signal processing (DSP). CD exercises in the workbook reinforce 
material in the textbook; concepts can be explored by viewing waveforms 
with a windows-based PC and by changing parameters to see the effects 
on the overall system. Some of the exercises provide basic training in using 
SystemView; others provide additional training in DSP techniques.

xx
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The teaching of a one-semester university course proceeds in a very different 
manner compared with that of a short-course in the same subject. At the university, 
one has the luxury of time—time to develop the needed skills and mathematical tools,
time to practice the ideas with homework exercises. In a short-course,  the treatment is 
almost backwards compared with the university. Because of the time factor, a short-
course teacher must “jump in” early with essential concepts and applications. One of 
the vehicles that I found useful in structuring a short course was to start by handing out 
a check list. This was not merely an outline of the curriculum. It represented a collec-
tion of concepts and nomenclature that are not clearly documented, and are often mis-
understood. The short-course students were thus initiated into the course by being 
challenged. I promised them that once they felt comfortable describing each issue, or 
answering each question on the list, they would be well on their way toward becoming 
knowledgeable in the field of digital communications. I have learned that this list of es-
sential concepts is just as valuable for teaching full-semester courses as it is for short 
courses. Here then is my “check list” for digital communications.

 1. What mathematical dilemma is the cause for there being several definitions of 
bandwidth? (See Section 1.7.2.)

 2. Why is the ratio of bit energy-to-noise power spectral density, Eb/N 0, a nat-
ural figure-to-merit for digital communication systems? (See Section 3.1.5.)

 3. When representing timed events, what dilemma can easily result in confusing 
the most-significant bit (MSB) and the least-significant bit (LSB)? (See Sec-
tion 3.2.3.1.)

 4. The error performance of digital signaling suffers primarily from two degra-
dation types. a) loss in signal-to-noise ratio, b) distortion resulting in an irre-
ducible bit-error probability. How do they differ? (See Section 3.3.2.)

 5. Often times, providing more Eb/N 0 will not mitigate the degradation due to 
intersymbol interference (ISI). Explain why. (See Section 3.3.2.)

 6. At what location in the system is Eb/N 0 defined? (See Section 4.3.2.)
 7. Digital modulation schemes fall into one of two classes with opposite behav-

ior characteristics. a) orthogonal signaling, b) phase/amplitude signaling. De-
scribe the behavior of each class. (See Sections 4.8.2 and 9.7.)

 8. Why do binary phase shift keying (BPSK) and quaternary phase shift keying 
(QPSK) manifest the same bit-error-probability relationship? Does the same 
hold true for M-ary pulse amplitude modulation (M-PAM) and M2-ary quad-
rature amplitude modulation (M2-QAM) bit-error probability? (See Sections 
4.8.4 and 9.8.3.1.)

 9. In orthogonal signaling, why does error-performance improve with higher di-
mensional signaling? (See Section 4.8.5.)

 10. Why is free-space loss a function of wavelength? (See Section 5.3.3.)
 11. What is the relationship between received signal to noise (S/N) ratio and car-

rier to noise (C/N) ratio? (See Section 5.4.)
 12. Describe four types of trade-offs that can be accomplished by using an error-

correcting code. (See Section 6.3.4.)
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 13. Why do traditional error-correcting codes yield error-performance degradation 
at low values of Eb/N 0? (See Section 6.3.4.)

 14. Of what use is the standard array in understanding a block code, and in eval-
uating its capability? (See Section 6.6.5.)

 15. Why is the Shannon limit of −1.6 dB not a useful goal in the design of real 
systems? (See Section 8.4.5.2.)

 16. What are the consequences of the fact that the Viterbi decoding algorithm 
does not yield a posteriori probabilities? What is a more descriptive name for 
the Viterbi algorithm? (See Section 8.4.6.)

 17. Why do binary and 4-ary orthogonal frequency shift keying (FSK) manifest 
the same bandwidth-efficiency relationship? (See Section 9.5.1.)

 18. Describe the subtle energy and rate transformations of received signals: from 
data-bits to channel-bits to symbols to chips. (See Section 9.7.7.)

 19. Define the following terms: Baud, State, Communications Resource, Chip, 
Robust Signal. (See Sections 1.1.3 and 7.2.2, Chapter 11, and Sections 12.3.2 
and 12.4.2.)

 20. In a fading channel, why is signal dispersion independent of fading rapidity? 
(See Section 15.1.1.1.)

I hope you find it useful to be challenged in this way. Now, let us describe 
the purpose of the book in a more methodical way. This second edition is intended 
to provide a comprehensive coverage of digital communication systems for se-
nior level undergraduates, first year graduate students, and practicing engineers. 
Though the emphasis is on digital communications, necessary analog fundamentals 
are included since analog waveforms are used for the radio transmission of digital 
signals. The key feature of a digital communication system is that it deals with a fi-
 nite set of discrete messages, in contrast to an analog communication system in 
which messages are defined on a continuum. The objective at the receiver of the 
digital system is not to reproduce a waveform with precision; it is instead to deter-
mine from a noise-perturbed signal, which of the finite set of waveforms had been 
sent by the transmitter. In fulfillment of this objective, there has arisen an impres-
sive assortment of signal processing techniques.

The book develops these techniques in the context of a unified structure. The 
structure, in block diagram form, appears at the beginning of each chapter; blocks in 
the diagram are emphasized, when appropriate, to correspond to the subject of that 
chapter. Major purposes of the book are to add organization and structure to a field 
that has grown and continues to grow rapidly, and to insure awareness of the “big 
picture” even while delving into the details. Signals and key processing steps are 
traced from the information source through the transmitter, channel, receiver, and 
ultimately to the information sink. Signal transformations are organized according to 
nine functional classes: Formatting and source coding, Baseband signaling, Band-
pass signaling, Equalization, Channel coding, Muliplexing and multiple access, 
Spreading, Encryption, and Synchronization. Throughout the book, emphasis is 
placed on system goals and the need to trade off basic system parameters such as 
 signal-to-noise ratio, probability of error, and bandwidth expenditure.
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ORGANIZATION OF THE BOOK

Chapter 1 introduces the overall digital communication system and the basic signal 
transformations that are highlighted in subsequent chapters. Some basic ideas 
of random variables and the additive white Gaussian noise (AWGN) model are 
 reviewed. Also, the relationship between power spectral density and autocorrelation, 
and the basics of signal transmission through linear systems are established. 
Chapter 2 covers the signal processing step, known as formatting, in order to render 
an information signal compatible with a digital system. Chapter 3 emphasizes baseband 
signaling, the detection of signals in Gaussian noise, and receiver optimiza-
tion. Chapter 4 deals with bandpass signaling and its associated modulation and 
demodulation/detection techniques. Chapter 5 deals with link analysis, an im-
portant subject for providing overall system insight; it considers some subtleties 
that are often missed. Chapters 6, 7, and 8 deal with channel coding—a cost-effective 
way of providing a variety of system performance trade-offs. Chapter 6 emphasizes 
linear block codes, Chapter 7 deals with convolutional codes, and Chapter 8 deals with 
Reed–Solomon codes and concatenated codes such as turbo codes.

Chapter 9 considers various modulation/coding system trade-offs dealing with 
probability of bit-error performance, bandwidth efficiency, and signal-to-noise 
ratio. It also treats the important area of coded modulation, particularly trellis-coded 
modulation. Chapter 10 deals with synchronization for digital systems. It covers 
phase-locked loop implementation for achieving carrier synchronization. It covers 
bit synchronization, frame synchronization, and network synchronization, and it 
introduces some ways of performing synchronization using digital methods.

Chapter 11 treats multiplexing and multiple access. It explores techniques that 
are available for utilizing the communication resource efficiently. Chapter 12 intro-
duces spread spectrum techniques and their application in such areas as multiple 
access, ranging, and interference rejection. This technology is important for both 
military and commercial applications. Chapter 13 deals with source coding which is 
a special class of data formatting. Both formatting and source coding involve digiti-
zation of data; the main difference between them is that source coding additionally 
involves data redundancy reduction. Rather than considering source coding imme-
diately after formatting, it is purposely treated in a later chapter so as not to inter-
rupt the presentation flow of the basic processing steps. Chapter 14 covers basic 
encryption/decryption ideas. It includes some classical concepts, as well as a class of 
systems called public key cryptosystems, and the widely used E-mail encryption 
software known as Pretty Good Privacy (PGP). Chapter 15 deals with fading chan-
nels. Here, we deal with applications, such as mobile radios, where characteriza-
tion of the channel is much more involved than that of a nonfading one. The design 
of a communication system that will withstand the degradation effects of fading can 
be much more challenging than the design of its nonfading counterpart. In this 
chapter, we describe a variety of techniques that can mitigate the effects of fading, 
and we show some successful designs that have been implemented.

It is assumed that the reader is familiar with Fourier methods and convolu-
tion. Appendix A reviews these techniques, emphasizing those properties that are 
particularly useful in the study of communication theory. It also assumed that the 
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reader has a knowledge of basic probability and has some familiarity with random 
variables. Appendix B builds on these disciplines for a short treatment on statistical 
decision theory with emphasis on hypothesis testing—so important in the under-
standing of detection theory. A new section, Appendix E, has been added to serve 
as a short tutorial on s-domain, z-domain, and digital filtering.

If the book is used for a two-term course, a simple partitioning is suggested; 
the first seven chapters can be taught in the first term, and the last eight chapters 
in the second term. If the book is used for a one-term introductory course, it is sug-
gested that the course material be selected from the following chapters: 1, 2, 3, 4, 
 5, 6, 7, 9, 10, 12.
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CHAPTER 1

Signals and Spectra

1
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This book presents the ideas and techniques fundamental to digital communication 
systems. Emphasis is placed on system design goals and on the need for trade-offs 
among basic system parameters such as signal-to-noise ratio (SNR), probability of 
error, and bandwidth expenditure. We shall deal with the transmission of informa-
tion (voice, video, or data) over a path (channel) that may consist of wires, wave-
guides, or space.

Digital communication systems are becoming increasingly attractive because 
of the ever-growing demand for data communication and because digital transmis-
sion offers data processing options and flexibilities not available with analog trans-
mission. In this book, a digital system is often treated in the context of a satellite 
communications link. Sometimes the treatment is in the context of a mobile radio 
system, in which case signal transmission typically suffers from a phenomenon 
called fading. In general, the task of characterizing and mitigating the degradation 
effects of a fading channel is more challenging than performing similar tasks for a 
nonfading channel.

The principal feature of a digital communication system (DCS) is that during 
a finite interval of time, it sends a waveform from a finite set of possible wave-
forms, in contrast to an analog communication system, which sends a waveform 
from an infinite variety of waveform shapes with theoretically infinite resolution. 
In a DCS, the objective at the receiver is not to reproduce a transmitted waveform 
with precision; instead, the objective is to determine from a noise-perturbed signal 
which waveform from the finite set of waveforms was sent by the transmitter. 
An important measure of system performance in a DCS is the probability of 
error (PE).

2 Signals and Spectra    Chap. 1
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1.1  Digital Communication Signal Processing 3

1.1  DIGITAL COMMUNICATION SIGNAL PROCESSING

1.1.1 Why Digital?

Why are communication systems, military and commercial alike, “going digital”? 
There are many reasons. The primary advantage is the ease with which digital sig-
nals, compared with analog signals, are regenerated. Figure 1.1 illustrates an ideal 
binary digital pulse propagating along a transmission line. The shape of the wave-
form is affected by two basic mechanisms: (1) as all transmission lines and circuits 
have some nonideal frequency transfer function, there is a distorting effect on the 
ideal pulse; and (2) unwanted electrical noise or other interference further distorts 
the pulse waveform. Both of these mechanisms cause the pulse shape to degrade 
as a function of line length, as shown in Figure 1.1. During the time that the trans-
mitted pulse can still be reliably identified (before it is degraded to an ambiguous
state), the pulse is amplified by a digital amplifier that recovers its original 
ideal shape. The pulse is thus “reborn” or regenerated. Circuits that perform this 
function at regular intervals along a transmission system are called regenerative 
 repeaters.

Digital circuits are less subject to distortion and interference than are analog 
circuits. Because binary digital circuits operate in one of two states—fully on or 
fully off—to be meaningful, a disturbance must be large enough to change the cir-
cuit operating point from one state to the other. Such two-state operation facili-
tates signal regeneration and thus prevents noise and other disturbances from 
accumulating in transmission. Analog signals, however, are not two-state signals; 
they can take an infinite variety of shapes. With analog circuits, even a small distur-
bance can render the reproduced waveform unacceptably distorted. Once the 
 analog signal is distorted, the distortion cannot be removed by amplification. 
 Because accumulated noise is irrevocably bound to analog signals, they cannot be 
perfectly regenerated. With digital techniques, extremely low error rates producing 

Propagation distance
1

Distance 1
Original
pulse signal

Distance 2
Some signal
distortion

Distance 3
Degraded
signal

Distance 4
Signal is badly
degraded

Distance 5
Amplification
to regenerate
pulse

2 3 4 5

Figure 1.1  Pulse degradation and regeneration.
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4 Signals and Spectra    Chap. 1

high signal fidelity are possible through error detection and correction but similar 
procedures are not available with analog.

There are other important advantages to digital communications. Digital cir-
cuits are more reliable and can be produced at a lower cost than analog circuits. 
Also, digital hardware lends itself to more flexible implementation than analog 
hardware [e.g., microprocessors, digital switching, and large-scale integrated (LSI) 
circuits]. The combining of digital signals using time-division multiplexing (TDM) 
is simpler than the combining of analog signals using frequency-division multiplex-
ing (FDM). Different types of digital signals (data, telegraph, telephone, television) 
can be treated as identical signals in transmission and switching—a bit is a bit. Also, 
for convenient switching, digital messages can be handled in autonomous groups 
called packets. Digital techniques lend themselves naturally to signal processing 
functions that protect against interference and jamming, or that provide encryption 
and privacy. (Such techniques are discussed in Chapters 12 and 14, respectively.) 
Also, much data communication is from computer to computer, or from digital 
 instruments or terminal to computer. Such digital terminations are naturally best 
served by digital communication links.

What are the costs associated with the beneficial attributes of digital commu-
nication systems? Digital systems tend to be very signal-processing intensive com-
pared with analog. Also, digital systems need to allocate a significant share of their 
resources to the task of synchronization at various levels. (See Chapter 10.) With 
analog systems, on the other hand, synchronization often is accomplished more 
easily. One disadvantage of a digital communication system is nongraceful degrada-
tion. When the signal-to-noise ratio drops below a certain threshold, the quality of 
service can change suddenly from very good to very poor. In contrast, most analog 
communication systems degrade more gracefully.

1.1.2  Typical Block Diagram and Transformations

The functional block diagram shown in Figure 1.2 illustrates the signal flow and the 
signal-processing steps through a typical digital communication system (DCS). This 
figure can serve as a kind of road map, guiding the reader through the chapters of this 
book. The upper blocks—format, source encode, encrypt, channel encode, multi-
plex, pulse modulate, bandpass modulate, frequency spread, and multiple access—
denote signal transformations from the source to the transmitter (XMT). The lower 
blocks denote signal transformations from the receiver (RCV) to the sink, essentially 
reversing the signal processing steps performed by the upper blocks. The modulate 
and demodulate/detect blocks together are called a modem. The term “modem” often 
encompasses several of the signal processing steps shown in Figure 1.2; when this is 
the case, the modem can be thought of as the “brains” of the system. The transmitter 
and receiver can be thought of as the “muscles” of the system. For wireless applica-
tions, the transmitter consists of a frequency up-conversion stage to a radio frequency 
(RF), a high-power amplifier, and an antenna. The receiver portion consists of an 
 antenna and a low-noise amplifier (LNA). Frequency down-conversion is performed 
in the front end of the receiver and/or the demodulator.
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1.1  Digital Communication Signal Processing 5

Figure 1.2 illustrates a kind of reciprocity between the blocks in the upper 
transmitter part of the figure and those in the lower receiver part. The signal pro-
cessing steps that take place in the transmitter are, for the most part, reversed in 
the receiver. In Figure 1.2, the input information source is converted to binary dig-
its (bits); the bits are then grouped to form digital messages or message symbols. 
Each such symbol (mi, where i ϭ 1 , . . . , M) can be regarded as a member of a finite 
alphabet set containing M members. Thus, for M ϭ 2, the message symbol mi is bi-
nary (meaning that it constitutes just a single bit). Even though binary symbols fall 
within the general definition of M-ary, nevertheless the name M-ary is usually ap-
plied to those cases where M Ͼ 2; hence, such symbols are each made up of a se-
quence of two or more bits. (Compare such a finite alphabet in a DCS with an 
analog system, where the message waveform is typically a member of an infinite set 
of possible waveforms.) For systems that use channel coding (error correction cod-
ing), a sequence of message symbols becomes transformed to a sequence of chan-
nel symbols (code symbols), where each channel symbol is denoted ui. Because a
message symbol or a channel symbol can consist of a single bit or a grouping of bits, 
a sequence of such symbols is also described as a bit stream, as shown in Figure 1.2.

Consider the key signal processing blocks shown in Figure 1.2; only format-
ting, modulation, demodulation/detection, and synchronization are essential for a 
DCS. Formatting transforms the source information into bits, thus assuring com-

Figure 1.2  Block diagram of a typical digital communication system.
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patibility between the information and the signal processing within the DCS. From 
this point in the figure up to the pulse-modulation block, the information remains 
in the form of a bit stream. Modulation is the process by which message symbols 
or channel symbols (when channel coding is used) are converted to waveforms that 
are compatible with the requirements imposed by the transmission channel. Pulse 
modulation is an essential step because each symbol to be transmitted must first be 
transformed from a binary representation (voltage levels representing binary ones 
and zeros) to a baseband waveform. The term baseband refers to a signal whose 
spectrum extends from (or near) dc up to some finite value, usually less than a few 
megahertz. The pulse-modulation block usually includes filtering for minimizing 
the transmission bandwidth. When pulse modulation is applied to binary symbols, the 
resulting binary waveform is called a pulse-code-modulation (PCM) waveform. 
There are several types of PCM waveforms (described in Chapter 2); in telephone 
applications, these waveforms are often called line codes. When pulse modulation 
is applied to nonbinary symbols, the resulting waveform is called an M-ary pulse-
modulation waveform. There are several types of such waveforms, and they too 
are described in Chapter 2, where the one called pulse-amplitude modulation 
(PAM) is emphasized. After pulse modulation, each message symbol or channel 
symbol takes the form of a baseband waveform gi(t), where i ϭ 1, . . . , M. In any 
electronic implementation, the bit stream, prior to pulse-modulation, is repre-
sented with voltage levels. One might wonder why there is a separate block for 
pulse modulation when in fact different voltage levels for binary ones and zeros 
can be viewed as impulses or as ideal rectangular pulses, each pulse occupying 
one bit time. There are two important differences between such voltage levels and 
the baseband waveforms used for modulation. First, the pulse-modulation block 
allows for a variety of binary and M-ary pulse-waveform types. Section 2.8.2 
 describes the different useful attributes of these types of waveforms. Second, the 
filtering within the pulse- modulation block yields pulses that occupy more than 
just one-bit time. Filtering yields pulses that are spread in time, thus the pulses are 
“smeared” into neighboring bit-times. This filtering is sometimes referred to as 
pulse shaping; it is used to contain the transmission bandwidth within some desired 
spectral region.

For an application involving RF transmission, the next important step is 
bandpass modulation; it is required whenever the transmission medium will not 
support the propagation of pulse-like waveforms. For such cases, the medium re-
quires a bandpass waveform si(t), where i ϭ 1 , . . . , M . The term bandpass is used 
to indicate that the baseband waveform gi(t) is frequency translated by a carrier 
wave to a frequency that is much larger than the spectral content of gi(t). As si(t) 
propagates over the channel, it is impacted by the channel characteristics, which 
can be described in terms of the channel’s impulse response hc(t) (see Section 
1.6.1). Also, at various points along the signal route, additive random noise distorts 
the received signal r(t), so that its reception must be termed a corrupted version of 
the signal si(t) that was launched at the transmitter. The received signal r(t) can be 
expressed as

 r1t2 ϭ si 1t2 * hc1t2 ϩ n1t2 i ϭ 1, . . . , M (1.1)

6 Signals and Spectra    Chap. 1
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where * represents a convolution operation (see Appendix A), and n(t) represents 
a noise process (see Section 1.5.5).

In the reverse direction, the receiver front end and/or the demodulator pro-
vides frequency down-conversion for each bandpass waveform r(t). The demodula-
tor restores r(t) to an optimally shaped baseband pulse z(t) in preparation for 
detection. Typically, there can be several filters associated with the receiver and 
demodulator—filtering to remove unwanted high frequency terms (in the fre -
quency down-conversion of bandpass waveforms), and filtering for pulse shaping. 
Equalization can be described as a filtering option that is used in or after the de-
modulator to reverse any degrading effects on the signal that were caused by the 
channel. Equalization becomes essential whenever the impulse response of the 
channel, hc(t), is so poor that the received signal is badly distorted. An equalizer is 
implemented to compensate for (i.e., remove or diminish) any signal distortion 
caused by a nonideal hc(t). Finally, the sampling step transforms the shaped pulse 
z(t) to a sample z(T), and the detection step transforms z(T) to an estimate of the 
channel symbol ûi or an estimate of the message symbol m̂ i (if there is no channel 
coding). Some authors use the terms  “demodulation” and “detection” interchange-
ably. However, in this book, demodulation is defined as recovery of a waveform 
(baseband pulse), and detection is defined as decision-making regarding the digital 
meaning of that waveform.

The other signal processing steps within the modem are design options for 
specific system needs. Source coding produces analog-to-digital (A/D) conversion 
(for analog sources) and removes redundant (unneeded) information. Note that 
a typical DCS would either use the source coding option (for both digitizing and 
compressing the source information), or it would use the simpler formatting trans-
formation (for digitizing alone). A system would not use both source coding and 
formatting, because the former already includes the essential step of digitizing the 
information. Encryption, which is used to provide communication privacy, prevents 
unauthorized users from understanding messages and from injecting false messages 
into the system. Channel coding, for a given data rate, can reduce the probability of 
error, PE, or reduce the required signal-to-noise ratio to achieve a desired PE at 
the expense of transmission bandwidth or decoder complexity. Multiplexing and 
 multiple-access procedures combine signals that might have different characteristics 
or might originate from different sources, so that they can share a portion of the 
communications resource (e.g., spectrum, time). Frequency spreading can produce 
a signal that is relatively invulnerable to interference (both natural and intentional) 
and can be used to enhance the privacy of the communicators. It is also a valuable 
technique used for multiple access.

The signal processing blocks shown in Figure 1.2 represent a typical arrange-
ment; however, these blocks are sometimes implemented in a different order. For 
example, multiplexing can take place prior to channel encoding, or prior to modu-
lation, or—with a two-step modulation process (subcarrier and carrier)—it can be 
performed between the two modulation steps. Similarly, frequency spreading can 
take place at various locations along the upper portion of Figure 1.2; its precise 
 location depends on the particular technique used. Synchronization and its key ele-
ment, a clock signal, is involved in the control of all signal processing within the 

1.1  Digital Communication Signal Processing 7

Sklar_Chapter_01.indd   7Sklar_Chapter_01.indd   7 8/20/08   3:38:53 PM8/20/08   3:38:53 PM



DCS. For simplicity, the synchronization block in Figure 1.2 is drawn without any 
connecting lines, when in fact it actually plays a role in regulating the operation of 
almost every block shown in the figure.

Figure 1.3 shows the basic signal processing functions, which may be viewed 
as transformations, classified into the following nine groups:

 1. Formatting and source coding
 2. Baseband signaling
 3. Bandpass signaling
 4. Equalization
 5. Channel coding
 6. Multiplexing and multiple access
 7. Spreading
 8. Encryption
 9. Synchronization

Although this organization has some inherent overlap, it provides a useful 
 structure for the book. Beginning with Chapter 2, the nine basic transformations are 
considered individually. In Chapter 2, the basic formatting techniques for transforming 
the source information into message symbols are discussed, as well as the selection of 
baseband pulse waveforms and pulse filtering for making the message symbols com-
patible with baseband transmission. The reverse steps of demodula  tion, equalization, 
sampling, and detection are described in Chapter 3. Formatting and source coding 
are similar processes, in that they both involve data digitization.  However, the term 
“source coding” has taken on the connotation of data compression in addition to digi-
tization; it is treated later (in Chapter 13), as a special case of formatting.

In Figure 1.3, the Baseband Signaling block contains a list of binary choices 
 under the heading of PCM waveforms or line codes. In this block, a nonbinary 
 category of waveforms called M-ary pulse modulation is also listed. Another trans-
formation in Figure 1.3, labeled Bandpass Signaling is partitioned into two basic blocks, 
coherent and noncoherent. Demodulation is typically accomplished with the aid of ref-
erence waveforms. When the references used are a measure of all the signal attributes 
(particularly phase), the process is termed coherent; when phase information is not 
used, the process is termed noncoherent. Both techniques are  detailed in Chapter 4.

Chapter 5 is devoted to link analysis. Of the many specifications, analyses, and 
tabulations that support a developing communication system, link analysis stands out 
in its ability to provide overall system insight. In Chapter 5 we bring together all the 
link fundamentals that are essential for the analysis of most communication systems.

Channel coding deals with the techniques used to enhance digital signals so 
that they are less vulnerable to such channel impairments as noise, fading, and jam-
ming. In Figure 1.3 channel coding is partitioned into two blocks, waveform coding 
and structured sequences. Waveform coding involves the use of new waveforms, 
yielding improved detection performance over that of the original waveforms. 
Structured sequences involve the use of redundant bits to determine whether or 

8 Signals and Spectra    Chap. 1
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